首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   3篇
  国内免费   2篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2007年   3篇
  2005年   2篇
  2002年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
3.
Soil Organic Phosphorus Transformations During Pedogenesis   总被引:2,自引:0,他引:2  
Abstract Long-term changes in soil phosphorus influence ecosystem development and lead to a decline in the productivity of forests in undisturbed landscapes. Much of the soil phosphorus occurs in a series of organic compounds that differ in their availability to organisms, but changes in the relative abundance of these compounds during pedogenesis remain unknown. We used alkaline extraction and solution phosphorus-31 nuclear magnetic resonance spectroscopy to assess the chemical nature of soil organic phosphorus along a 120,000-year post-glacial chronosequence at Franz Josef, New Zealand. Inositol phosphates, DNA, phospholipids, and phosphonates accumulated rapidly during the first 500 years of soil development characterized by nitrogen limitation of biological productivity, but then declined slowly to low concentrations in older soils characterized by intense phosphorus limitation. However, the relative contribution of the various compounds to the total organic phosphorus varied along the sequence in dramatic and surprising ways. The proportion of inositol hexakisphosphate, conventionally considered to be relatively recalcitrant in the environment, declined markedly in older soils, apparently due to a corresponding decline in amorphous metal oxides, which weather to crystalline forms during pedogenesis. In contrast, the proportion of DNA, considered relatively bioavailable in soil, increased continually throughout the sequence, due apparently to incorporation within organic structures that provide protection from biological attack. The changes in soil organic phosphorus coincided with marked shifts in plant and microbial communities, suggesting that differences in the forms and bioavailability of soil organic phosphorus have ecological significance. Overall, the results strengthen our understanding of phosphorus transformations during pedogenesis and provide important insight into factors regulating the composition of soil organic phosphorus.  相似文献   
4.
5.
Nitrogen and phosphorus are the main elements limiting net primary production in terrestrial ecosystems. When growing in nutrient‐poor soils, plants develop physiological mechanisms to conserve nutrients, such as reabsorbing elements from senescing foliage (i.e. nutrient retranslocation). We investigated the changes in soil N and P in post‐fire succession in temperate rainforests of southern Chile. In this area, forest recovery often leads to spatially scattered, discrete regeneration with patches varying in age, area, species richness and tree cover, representing different degrees of recovery from disturbance. We hypothesized that soil nutrient concentrations should differ among tree regenerating patches depending on the progress of forest regeneration and that nutrient resorption should increase over time as colonizing trees respond to limited soil nutrients. To evaluate these hypotheses, we sampled 40 regeneration patches in an area of 5 ha, spanning a broad range of vegetation complexity, and collected soil, tree foliage and litter samples to determine N and P concentrations. Nutrient concentrations in leaf litter were interpreted as nutrient resorption proficiency. We found that soil P was negatively correlated with all the indicators of successional progress, whereas total soil N was independent of the successional progress. Foliar N and P were unrelated to soil nutrient concentrations; however, litter N was negatively related to soil N, and litter P was positively related with soil P. Finally, foliar N:P ratios ranged from 16 to 25, which suggests that P limitation can hamper post‐fire regeneration. We provide evidence that after human‐induced fires, succession in temperate forests of Chile can become nutrient limited and that high nutrient retranslocation is a key nutrient conservation strategy for regenerating tree communities.  相似文献   
6.
In the long-term absence of disturbance, ecosystems often enter a decline or retrogressive phase which leads to reductions in primary productivity, plant biomass, nutrient cycling and foliar quality. However, the consequences of ecosystem retrogression for higher trophic levels such as herbivores and predators, are less clear. Using a post-fire forested island-chronosequence across which retrogression occurs, we provide evidence that nutrient availability strongly controls invertebrate herbivore biomass when predators are few, but that there is a switch from bottom-up to top-down control when predators are common. This trophic flip in herbivore control probably arises because invertebrate predators respond to alternative energy channels from the adjacent aquatic matrix, which were independent of terrestrial plant biomass. Our results suggest that effects of nutrient limitation resulting from ecosystem retrogression on trophic cascades are modified by nutrient-independent variation in predator abundance, and this calls for a more holistic approach to trophic ecology to better understand herbivore effects on plant communities.  相似文献   
7.
Changes in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump‐shaped responses to soil ageing, which were propagated to higher‐order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate‐aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change.  相似文献   
8.
放牧退化群落中冷蒿种群生物量资源分配的变化   总被引:16,自引:1,他引:15  
王静  杨持  王铁娟 《应用生态学报》2005,16(12):2316-2320
对放牧退化群落中冷蒿种群生物量及生物量资源分配的变化进行了研究.结果表明,在放牧干扰下,随着放牧退化程度的增加,冷蒿种群叶、茎、根的生物量及总生物量增加.其中根的重量增加幅度较大,但生殖构件(花序、果实)的生物量在轻度退化群落中增加,中度退化群落中迅速减少,重度退化群落中未发现生殖构件.随着放牧退化程度增加,冷蒿种群生物量的资源分配发生变化,对根的分配增加,对茎、叶的分配减少,根冠比增加;对无性繁殖的分配增加,对有性生殖的分配减少.在重度退化群落,冷蒿有性生殖严重受阻,繁殖格局发生变化.从资源分配的动态来看,随着放牧退化程度的增加,生长初期至盛期,冷蒿种群资源优先分配给地上部分,尤其是光合器官叶;而生长盛期至末期,资源优先分配给有性生殖或贮藏器官.繁殖格局的转变是冷蒿种群耐牧,在重度退化下成为建群种的关键.资源分配格局的时空变化,使生长、维持和繁殖等方面的分配达到和谐,是冷蒿种群在重度退化下成为建群种的物质基础.  相似文献   
9.
厦门木麻黄种群交配系统及近交衰退   总被引:9,自引:0,他引:9  
陈小勇  林鹏 《应用生态学报》2002,13(11):1377-1380
木麻黄耐沙生,盐碱,是沿海优良的防护林树种,从20世纪80年代开始,木麻黄林呈现出衰退现象。采用等位酶分析技术研究木麻黄种群的交配系统及近交衰退,木麻黄种群异交率为0.622,表明为混合酱类型,与其亲缘种比较来看,引种降低了木麻黄异交率,增加了近交,采用电是接估算的近交衰退程度很高。结果表明,引种过程中的建立者效应引起的近交及其后的近交衰退确定在木麻黄林衰退中起了重要作用,根据基因型有选择地引起木麻黄以减轻衰退。  相似文献   
10.
以19个水稻杂交组合为试验材料,通过大田条件下的分期播种,于抽穗期调查了稻穗枝梗、颖花分化、退化及形成有关性状,分析了各性状不同季节的变异及其相互关系。结果表明,单穗一次枝梗分化数、二次枝梗分化数、颖花分化数、一次枝梗退化数、二次枝梗退化数、颖花退化数、一次枝梗退化率、二次枝梗退化率、颖花退化率、一次枝梗形成数、二次枝梗形成数、一次枝梗颖花形成数、二次枝梗颖花形成数和单穗颖花总形成数等性状均存在较大的组合间差异和季节间变异,其中19个组合单穗颖花总形成数异季差异率变幅为5.12%~93.59%,平均变异率为34.19%;总体上,不同季节下二次枝梗各性状的变异性强,颖花性状其次,一次枝梗各性状变异性最小;根据异季条件下稻穗枝梗和颖花分化、退化及其形成性状的变异性,从大穗角度讨论了杂交稻新组合育种资源选择与利用问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号